
1

A MongoDB C100DBA Exam Study Guide
Information content is from study presentations and v3.2 Manual Documentation at mongodb.com.

Study topics are based on MongoDB C100DBA Study Guide and MongoDB Architecture Guide, not actual

exam questions.

Table of Contents
1.0 JSON What data types, how many? .. 3

1.1 BSON ... 3

2.0 CRUD (Create, Read, Update, Delete) ... 4

2.1 Document Insertion and Update .. 4

2.1.1 Document Validation ... 4

2.2 Read .. 4

2.2.1 Cursors ... 5

2.2.2 Explain Method .. 6

2.2.3 explain() Mechanics .. 6

2.3 Update ... 6

2.4 Delete .. 7

2.5 Write Concern ... 7

2.6 Capped Collections .. 7

2.7 mongoImport .. 8

3.0 Indexes: Single, Compound, Multikey (array elements) ... 8

3.1 Index Types ... 8

3.2 Index Properties .. 9

3.3 Index Use ... 10

3.4 Index Restrictions .. 11

4.0 Data Modeling ... 11

4.1 Document Growth .. 11

4.2 Data Use and Performance ... 12

4.3 Working Set ... 12

4.4 Modeling Tree Structures ... 12

4.5 Data Storage Engines .. 12

5.0 Aggregation ... 12

6.0 Replication: PRIMARY, SECONDARY, ARBITER .. 13

6.1. Write Concern .. 14

6.2 Read Preference, Example: db.collection.find().readPref({mode: 'nearest', tags: [{'dc': 'east'}]}) 14

6.3 Read Concern .. 15

6.4 Elections/Voting .. 15

https://university.mongodb.com/exam/C100DBA/2016_July/guide#id24
http://s3.amazonaws.com/info-mongodb-com/MongoDB_Architecture_Guide.pdf

2

6.5 Priority ... 15

6.6 Failover/Rollover ... 16

6.7 Hidden Replica Set Member ... 16

6.8 Delayed Replica Set Member .. 16

6.9.0 Replica Set Oplog ... 17

7.0 Sharded Clusters ... 18

7.1 Sharded Cluster Components ... 18

7.2 Data Partitioning/Shard Key.. 19

7.3 Config Servers ... 20

7.4 Mongos ... 20

8.0 Security ... 20

8.1 Authentication Mechanism ... 20

8.2 Users.. 21

8.3 Sharded Cluster Users ... 21

8.3.1 Locahost Exception .. 21

8.4 Add Users .. 22

8.5 Enable Client Access Control ... 22

8.5.1 Considerations ... 22

8.6 Built-in Roles ... 22

8.6.1 User Roles .. 22

8.6.2 Database Admin Roles ... 23

8.6.3 Cluster Admin Roles ... 23

8.6.4 Backup and Restoration Roles ... 23

8.6.5 All-Database Roles ... 23

8.6.6 Other Roles .. 24

9.0 Encryption ... 25

9.1 Transport Encryption .. 25

9.2 Encryption at Rest Wired-Tiger Storage Engine only, Enterprise Edition Only ... 25

10.0 Administration .. 25

10.1 Backup Methods ... 25

10.1.1 Filesystem Snapshot... 25

10.1.2 Copy Underlying Data Files .. 25

10.2 Incremental Backups Using mongooplog.. 26

10.3 Journal Files ... 26

10.4 Server Logs .. 26

10.4.1 Log Message Components ... 26

3

10.4.2 Log Rotation ... 27

10.5 Database Profiling ... 27

10.6 Monitoring .. 27

10.6.1 MongoDB Reporting Tools ... 28

10.6.2 Monitor Commands ... 28

11. MongoDB and Relational Databases ... 28

Database Concepts ... 28

Flexible (Schema-less) Schema ... 29

Atomocity of Write Operations ... 29

Appendix ... 29

A.1 BSON data types ... 29

A.2 Unique Keys for Sharded Collections .. 30

A.3 Deploy a Sharded Cluster Test Environment, tutorial .. 31

A.3.1 Use shell script “init_sharded_env_raw.sh” .. 31

A.3.2 ShardingTest Platform ... 31

A.3.3 Insert some data using shell script .. 31

A.4 Compound Multikey Indexes and Multikey Index Bounds ... 32

A.5 Enabling Authentication Example ... 32

1.0 JSON What data types, how many?
MongoDB gives users the ease of use and flexibility of JSON documents together with the speed and richness of BSON, a

lightweight binary format.

 JSON spec. is described here.

 Native data types(6): JSON: Number, String, Boolean, Array, Value, Object

 extended mongoDB data types (2): DATETME, GridFS

 The empty object “{}” and empty array “[]” are valid JSON documents.

 Validate JSON documents website.

1.1 BSON
BSON extends the JSON model to provide additional data types and to be efficient for encoding and decoding within

different languages. MongoDB's BSON implementation supports embedding objects and arrays within other objects and

arrays – MongoDB can even 'reach inside' BSON objects to build indexes and match objects against query expressions on

both top-level and nested BSON keys.

 BSON is the binary equivalent of JSON documents. BSON spec is described at bsonspec.org.

 MongoDB uses extended BSON as described here.

 The maximum BSON document size is 16 megabytes. The maximum document size helps ensure that a single
document cannot use excessive amount of RAM or, during transmission, excessive amount of bandwidth. To
store documents larger than the maximum size, MongoDB provides the GridFS API.

http://json.org/
http://jsonlint.com/
http://bsonspec.org/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/

4

2.0 CRUD (Create, Read, Update, Delete)
Create or insert operations add new documents to a collection. If the collection does not currently exist, insert

operations will create the collection. All write operations in MongoDB are atomic on the level of a single document. See

more on Atomicity and Transactions.

In MongoDB, documents stored in a collection require a unique _id field that acts as a primary key. If an _id does not

exist in the document, MongoDB will create an ObjectID field. Generally, _id can itself be a complex document, any

BSON data type (still, it must be unique). ObjectID(<hexadecimal>) is described here.

2.1 Document Insertion and Update

 Update(): If using Update Operators ($set, $unset, $push, $pop, $inc, $rename, $min, $max…etc.) then only

related fields in the document are updated. If the update is composed of field:name arguments only, the entire

document is replaced. Once set, you cannot update the value of the _id field nor can you replace an existing

document with a replacement document with a different _id field value.

 Upsert(): If db.collection.update(), db.collection.updateOne(), db.collection.updateMany(), or

db.collection.replaceOne() includes upsert : true and no documents match the specified filter criteria, then a

single document is inserted. If both the <query> and <update> fields contain update operator expressions, the

update creates a base document from the equality clauses in the <query> parameter and then applies the

update expressions from the <update> parameter. If the document exists, an update() is perfomed according to

update() behavior.

 findAndModify(): Modifies and returns a single document. By default, the returned document does not include

the modifications made on the update. To return the document with the modifications made on the update, use

the new option.

 Bulk Load, multi-document Insertion: insert as an array of documents. Example: db.collections.insert([{Doc1},

{Doc2}…]). upon completion, a BulkWriteResult() is returned.

 The shell helper Save() method uses either the insert or the update command. This method performs an

update with upsert:true.

2.1.1 Document Validation
Starting with version 3.2, MongoDB provides the capability to validate documents during updates and insertions.

Validation rules are specified on a per-collection basis using the validator option, which takes a document that

specifies the validation rules or expressions. Specify the expressions using any query operators, with the exception of

$near, $nearSphere, $text, and $where.

Example: db.createCollection(“contacts”, {validator: { $or: [phone: {type: “string”},email: {$regex:/@mongodb\.com}]}})

o Add document validation to an existing collection using the collMod command with the validator option.

When you add validation to a collection, existing documents do not undergo validation checks until modification

(update).

o MongoDB also provides the validationLevel option, which determines how strictly MongoDB applies

validation rules to existing documents during an update, and the validationAction option, which

determines whether MongoDB should error (reject) or warn.

2.2 Read
In MongoDB, you read documents using either the db.collection.find() method, or the db.collection.findAndModify()

method. You should be familiar with both commands, but the .find() method will receive greater coverage on the exam.

db.collection.find(query, projection) selects documents in a collection and returns a cursor to the selected

documents. Query is the selection filter, projection are the returned result data fields. A projection cannot contain

both include and exclude specifications, except for the exclusion of the _id field. In projections that explicitly include

https://docs.mongodb.com/manual/core/document/#bson-document-format
https://docs.mongodb.com/manual/core/databases-and-collections/#collections
https://docs.mongodb.com/manual/core/write-operations-atomicity/
https://docs.mongodb.com/manual/reference/glossary/#term-id
https://docs.mongodb.com/manual/reference/glossary/#term-primary-key
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://docs.mongodb.com/manual/reference/method/db.collection.insert/
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://docs.mongodb.com/manual/reference/method/db.collection.update/#db.collection.update
https://docs.mongodb.com/manual/reference/method/db.collection.updateOne/#db.collection.updateOne
https://docs.mongodb.com/manual/reference/method/db.collection.updateMany/#db.collection.updateMany
https://docs.mongodb.com/manual/reference/method/db.collection.replaceOne/#db.collection.replaceOne
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/#db.collection.findAndModify
https://docs.mongodb.com/manual/reference/command/insert/#dbcmd.insert
https://docs.mongodb.com/manual/reference/command/update/#dbcmd.update
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/near/#op._S_near
https://docs.mongodb.com/manual/reference/operator/query/nearSphere/#op._S_nearSphere
https://docs.mongodb.com/manual/reference/operator/query/text/#op._S_text
https://docs.mongodb.com/manual/reference/operator/query/where/#op._S_where
https://docs.mongodb.com/manual/reference/command/collMod/#dbcmd.collMod
https://docs.mongodb.com/manual/reference/glossary/#term-cursor

5

fields, the _id field is the only field that you can explicitly exclude. An AND condition is implied for multiple selection

fields. Use $or operator for OR selections. Combined AND and OR:

db.users.find({status: "A", $or: [{ age: { $lt: 30 } }, { type: 1 }]})

Array Query: If a field contains an array and your query has multiple conditional operators, the field as a whole will

match if either a single array element meets the conditions or a combination of array elements meet the conditions. Use

$elemMatch operator for range matching a single array element. Using an Array Index:

db.users.find({ 'points.0.points': { $lte: 55 } })

 $in, $all are particular to Array queries and contain an array argument.

Embedded Document: if you use { name: { first: "Yukihiro", last: "Matsumoto" }} then Exact Matches Only. The query

field must match the embedded document exactly. Use Dot notation for more general match: {"name.first": "Yukihiro",

"name.last": "Matsumoto"} any array with both.

 Cursor methods: sort(), limit(), skip(). Cursor methods can be combined.

 you cannot project specific array elements using the array index; e.g. { "ratings.0": 1 }

 The { name : null } query matches documents that either contain the name field whose value is null or

that do not contain the name field. Use the $type: 10 operator to return only null fields.

 LibPRC regex library.

 Dot notation allows you to query inside nested documents.

2.2.1 Cursors
A query returns a cursor. If you assign the cursor to a variable you can iterate through the cursor results. E.g.

var myCursor = db.users.find({ type: 2 });

while (myCursor.hasNext()) {
 print(tojson(myCursor.next()));
}

Or,
myCursor.forEach(printjson);

Iterator Index using .toArray() method
var myCursor = db.inventory.find({ type: 2 });
var documentArray = myCursor.toArray();
var myDocument = documentArray[3];

 By default, the server will automatically close the cursor after 10 minutes of inactivity, or if client has exhausted

the cursor. The timeout value can be overridden.

 Sort, limit, skip methods operate as ordered in command

 cursor methods list

The db.serverStatus() method returns a document that includes a metrics field. The metrics field contains a

metrics.cursor field with the following information:

 number of timed out cursors since the last server restart

 number of open cursors with the option DBQuery.Option.noTimeout set to prevent timeout after a period of

inactivity

 number of “pinned” open cursors

https://docs.mongodb.com/manual/reference/method/js-cursor/
https://docs.mongodb.com/manual/reference/method/db.serverStatus/#db.serverStatus
https://docs.mongodb.com/manual/reference/command/serverStatus/#serverstatus.metrics
https://docs.mongodb.com/manual/reference/command/serverStatus/#serverstatus.metrics
https://docs.mongodb.com/manual/reference/command/serverStatus/#serverstatus.metrics.cursor

6

 total number of open cursors

2.2.2 Explain Method

MongoDB provides the db.collection.explain() method, the cursor.explain() method, and the explain

command to return information on query plans and execution statistics of the query plans. Find out which indexes are

used. These queries use indexes: aggregate, find, count, remove, update, group, sort. Note: Explain Methods do not

actually remove or update query data.

The mode affects the behavior of explain() and determines the amount of information to return. The possible modes

are: "queryPlanner", "executionStats", and "allPlansExecution". Default mode is "queryPlanner"

The explain results present the query plans as a tree of stages. Each stage passes its results (i.e. documents or index

keys) to the parent node. The leaf nodes access the collection or the indices. The internal nodes manipulate the

documents or the index keys that result from the child nodes. The root node is the final stage from which MongoDB

derives the result set.

Stages are descriptive of the operation; e.g.

 COLLSCAN for a collection scan

 IXSCAN for scanning index keys

 FETCH for retrieving documents

 SHARD_MERGE for merging results from shards

2.2.3 explain() Mechanics
The db.collection.explain() method wraps the explain command and is the preferred way to run explain.

db.collection.explain().find() is similar to db.collection.find().explain() with the following key differences:

 The db.collection.explain().find() construct allows for the additional chaining of query modifiers. For list of query

modifiers, see db.collection.explain().find().help().

 The db.collection.explain().find() returns a cursor, which requires a call to .next(), or its alias .finish(), to return

the explain() results. If run interactively in the mongo shell, the mongo shell automatically calls .finish() to return

the results. For scripts, however, you must explicitly call .next(), or .finish(), to return the results.

db.collection.explain().aggregate() is equivalent to passing the explain option to the db.collection.aggregate() method.

For an explanation of explain results, see explain-results

2.3 Update
Save(): Shell helper function. Updates an existing document or inserts a new document, depending on its document

parameter. The save() method uses either the insert or the update command. If the document does not contain an

_id field, then the save() method calls the insert() method. If the document contains an _id field, then the save()

method is equivalent to an update with the upsert option set to true.

findAndModify(): Modifies and returns a single document. By default, the returned document does not include the

modifications made on the update. To return the document with the modifications made on the update, use the new

option. The findAndModify() method is a shell helper around the findAndModify command. When using

findAndModify in a sharded environment, the query must contain the shard key for all operations against the shard

cluster for the sharded collections.

Update():Modifies an existing document or documents in a collection. The method can modify specific fields of an

existing document or documents or replace an existing document entirely, depending on the update parameter. By

default, the update() method updates a single document. Set the Multi Parameter to update all documents that match

https://docs.mongodb.com/master/reference/explain-results/
https://docs.mongodb.com/master/reference/method/db.collection.explain/#db.collection.explain
https://docs.mongodb.com/master/reference/method/cursor.explain/#cursor.explain
https://docs.mongodb.com/master/reference/command/explain/#dbcmd.explain
https://docs.mongodb.com/manual/reference/method/db.collection.explain/
https://docs.mongodb.com/manual/reference/command/explain/#dbcmd.explain
https://docs.mongodb.com/manual/reference/command/explain/#dbcmd.explain
https://docs.mongodb.com/manual/reference/method/cursor.explain/#cursor.explain
https://docs.mongodb.com/manual/reference/method/db.collection.explain/#explain-method-help
https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/#example-aggregate-method-explain-option
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/#db.collection.aggregate
https://docs.mongodb.com/manual/reference/explain-results/
https://docs.mongodb.com/manual/reference/method/db.collection.save/
https://docs.mongodb.com/manual/core/document/
https://docs.mongodb.com/manual/reference/command/insert/#dbcmd.insert
https://docs.mongodb.com/manual/reference/command/update/#dbcmd.update
https://docs.mongodb.com/manual/reference/glossary/#term-id
https://docs.mongodb.com/manual/reference/method/db.collection.insert/#db.collection.insert
https://docs.mongodb.com/manual/reference/glossary/#term-id
https://docs.mongodb.com/manual/reference/method/db.collection.update/#upsert-parameter
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/
https://docs.mongodb.com/manual/reference/command/findAndModify/#dbcmd.findAndModify
https://docs.mongodb.com/manual/reference/command/findAndModify/#dbcmd.findAndModify
https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://docs.mongodb.com/manual/reference/method/db.collection.update/#update-parameter
https://docs.mongodb.com/manual/reference/method/db.collection.update/#multi-parameter

7

the query criteria. When you execute an update() with upsert: true and the query matches no existing document,

MongoDB will refuse to insert a new document if the query specifies conditions on the _id field using dot notation.

Update Methods

2.4 Delete

Drop a Collection: db.collection.drop().Removes a collection from the database. The method also removes any

indexes associated with the dropped collection. The method provides a wrapper around the drop command.

Remove():Removes documents from a collection. By default, remove() removes all documents

that match the query expression.

 Specify the justOne option to limit the operation to removing a single document. To

delete a single document sorted by a specified order, use the findAndModify()

method.

 You cannot use the remove() method with a capped collection.

 All remove() operations for a sharded collection that specify the justOne option

must include the shard key or the _id field in the query specification.

 To remove all documents use db.collection.remove({}). However to remove all

documents from a collection, it may be more efficient to use the drop() method to

drop the entire collection, including the indexes, and then recreate the collection

and rebuild the indexes.

2.5 Write Concern
Write concern describes the level of acknowledgement requested from MongoDB for write operations to a standalone

mongod or to replica sets or to sharded clusters. In sharded clusters, mongos instances will pass the write concern on to

the shards.

W: 1 (default) Requests acknowledgement that the write operation has propagated to the standalone mongod or the

primary in a replica set.

W: 0 Requests no acknowledgment of the write operation. However, w:0 may return information about socket

exceptions and networking errors to the application.

W: “majority” Requests acknowledgment that write operations have propagated to the majority of voting nodes. implies

j: true, if journaling is enabled. Journaling is enabled by default.

 Use “majority” whenever possible with wtimeout[ms]: {writeConcern:{w:"majority",wtimeout:5000}}

2.6 Capped Collections
Capped collections are fixed-size collections that support high-throughput operations that insert and retrieve documents

based on insertion order. Capped collections work in a way similar to circular buffers: once a collection fills its allocated

space, it makes room for new documents by overwriting the oldest documents in the collection.

 You cannot Shard a Capped Collection.

 You cannot delete documents from a capped collection.

 If an update or a replacement operation changes the document size, the operation will fail.

 Capped collections have an _id field and an index on the _id field by default.

 TTL Collections are not compatible with capped collections.

use db.createCollection() to create a capped collection, or to create a new collection that uses document

validation. This command creates a capped collection named log with a maximum size of 5 megabytes and a maximum

of 5000 documents:

db.createCollection("log", { capped : true, size : 5242880, max : 5000 })

https://docs.mongodb.com/manual/core/document/#document-dot-notation
https://docs.mongodb.com/manual/tutorial/update-documents/
https://docs.mongodb.com/manual/reference/method/db.collection.drop/
https://docs.mongodb.com/manual/reference/command/drop/#dbcmd.drop
https://docs.mongodb.com/manual/reference/method/db.collection.remove/
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/#findandmodify-wrapper-sorted-remove
https://docs.mongodb.com/manual/reference/glossary/#term-capped-collection
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key
https://docs.mongodb.com/manual/reference/method/db.collection.drop/#db.collection.drop
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/sharding-introduction/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/write-concern/#wc-j
https://docs.mongodb.com/manual/core/capped-collections/
https://docs.mongodb.com/manual/reference/glossary/#term-capped-collection
https://docs.mongodb.com/manual/tutorial/expire-data/
https://docs.mongodb.com/manual/reference/glossary/#term-capped-collection
https://docs.mongodb.com/manual/core/document-validation/
https://docs.mongodb.com/manual/core/document-validation/

8

For a capped collection, a tailable cursor is a cursor that remains open after the client exhausts the results in the initial

cursor. As clients insert new documents into the capped collection, the tailable cursor continues to retrieve documents.

2.7 mongoImport
The mongoimport tool imports content from an Extended JSON, CSV, or TSV export created by mongoexport, or

potentially, another third-party export tool.

TSV: A text-based data format consisting of tab-separated values. This format is commonly used to exchange data

between relational databases, since the format is well-suited to tabular data. You can import TSV files using

mongoimport.

3.0 Indexes: Single, Compound, Multikey (array elements)
MongoDB defines indexes at the collection level and supports indexes on any field or sub-field of the documents in a

MongoDB collection. MongoDB indexes use a B-tree data structure. See this reference to Btree. Indexes slow writes but

vastly speed reads/queries.

3.1 Index Types

 Default _id Index: MongoDB creates a unique index on the _id field during the creation of a collection. The _id

index prevents clients from inserting two documents with the same value for the _id field. You cannot drop this

index on the _id field.

 Single Field: In addition to the MongoDB-defined _id index, MongoDB supports the creation of user-defined

ascending/descending indexes on a single field of a document.

 Embedded Field: You can create indexes on fields within embedded documents, just as you can index top-level

fields in documents. Indexes on embedded fields differ from indexes on embedded documents, which include

the full content up to the maximum index size of the embedded document in the index. Instead, indexes on

embedded fields allow you to use a “dot notation,” to introspect into embedded documents.

 Compound: MongoDB also supports user-defined indexes on multiple fields, i.e. compound indexes.

o Order of fields listed in a compound index has significance. For instance, if a compound index consists of

{ userid: 1, score: -1 }, the index sorts first by userid and then, within each userid value, sorts by score.

Sort order can matter in determining whether the index can support a sort operation.

o Index Prefixes: If a Compound Index is defined in the order of A,B,C then Index Prefixes are A and A,B.

The Index can support queries on A only, or A,B or A,B,C, or A,C but not B only, or C only or B, C since

without the A field, none of the listed fields correspond to a prefix index. If 2 Indexes are defined as A,B

and A, then the A only field Index is redundant and will not be used.

 Multikey: MongoDB uses multikey indexes to index the content stored in arrays. If you index a field that holds an

array value, MongoDB creates separate index entries for every element of the array. These multikey indexes

allow queries (such as keyword search) to select documents that contain arrays by matching on element or

elements of the arrays. MongoDB automatically determines whether to create a multikey index if the indexed

field contains an array value; you do not need to explicitly specify the multikey type.

 Geospatial: To support efficient queries of geospatial coordinate data, MongoDB provides two special indexes:

2d indexes that uses planar geometry when returning results and 2sphere indexes that use spherical geometry to

return results. See 2d Index Internals for a high level introduction to geospatial indexes.

 Text Indexes: MongoDB provides a text index type that supports searching for string content in a collection.

These text indexes do not store language-specific stop words (e.g. “the”, “a”, “or”) and stem the words in a

collection to only store root words. See Text Indexes for more information on text indexes and search.

 Hashed Indexes: To support hash based sharding, MongoDB provides a hashed index type, which indexes the

hash of the value of a field. These indexes have a more random distribution of values along their range, but only

support equality matches and cannot support range-based queries.

https://docs.mongodb.com/manual/reference/glossary/#term-capped-collection
https://docs.mongodb.com/manual/reference/program/mongoimport/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/program/mongoexport/#bin.mongoexport
https://docs.mongodb.com/manual/indexes/
https://docs.mongodb.com/manual/reference/glossary/#term-collection
https://en.wikipedia.org/wiki/B-tree
https://docs.mongodb.com/manual/core/index-unique/#index-type-unique
https://docs.mongodb.com/manual/core/document/#document-id-field
https://docs.mongodb.com/manual/core/index-single/
https://docs.mongodb.com/manual/core/index-single/#index-embedded-documents
https://docs.mongodb.com/manual/core/index-compound/
https://docs.mongodb.com/manual/core/index-multikey/
https://docs.mongodb.com/manual/core/index-multikey/
https://docs.mongodb.com/manual/core/2d/
https://docs.mongodb.com/manual/core/2dsphere/
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://docs.mongodb.com/manual/core/index-text/
https://docs.mongodb.com/manual/core/sharding-shard-key/#sharding-hashed-sharding
https://docs.mongodb.com/manual/core/index-hashed/

9

3.2 Index Properties

 Partial Indexes: Partial indexes only index the documents in a collection that meet a specified filter expression.

By indexing a subset of the documents in a collection, partial indexes have lower storage requirements and

reduced performance costs for index creation and maintenance. Partial indexes offer a superset of the

functionality of sparse indexes and should be preferred over sparse indexes.

Example: db.restaurants.createIndex({ cuisine: 1, name: 1 }, { partialFilterExpression: { rating: { $gt: 5 } } })

o MongoDB will not use the partial index for a query or sort operation if using the index results in an

incomplete result set.

o MongoDB cannot create multiple versions of an index that differ only in the options. As such, you cannot

create multiple partial indexes that differ only by the filter expression.

o Partial indexes only index the documents in a collection that meet a specified filter expression. If you

specify both the partialFilterExpression and a unique constraint, the unique constraint only

applies to the documents that meet the filter expression.

o Shard key indexes cannot be partial indexes.

 Sparse Indexes: The sparse property of an index ensures that the index only contain entries for documents that

have the indexed field. The index skips documents that do not have the indexed field. You can combine the

sparse index option with the unique index option to reject documents that have duplicate values for a field but

ignore documents that do not have the indexed key.

 TTL indexes: are special indexes that MongoDB can use to automatically remove documents from a collection

after a certain amount of time. This is ideal for certain types of information like machine generated event data,

logs, and session information that only need to persist in a database for a finite amount of time. See: Expire Data

from Collections by Setting TTL for implementation instructions. On replica set members, the TTL background

thread only deletes documents when a member is in state primary. Secondary members replicate deletion

operations from the primary.

db.eventlog.createIndex({ "lastModifiedDate": 1 }, { expireAfterSeconds: 3600 })

 Background Index Creation: For potentially long running index building operations, consider the background
operation so that the MongoDB database remains available during the index building operation. As of MongoDB
version 2.4, a mongod instance can build more than one index in the background concurrently. The background
index operation uses an incremental approach that is slower than the normal “foreground” index builds. If the
index is larger than the available RAM, then the incremental process can take much longer than the foreground
build. Queries will not use partially-built indexes: the index will only be usable once the index build is complete.

db.people.createIndex({ zipcode: 1}, {background: true})

o Unique Index: To create a unique index, use the db.collection.createIndex() method with the unique

option set to true. You can also enforce a unique constraint on compound indexes. If you use the unique

constraint on a compound index, then MongoDB will enforce uniqueness on the combination of the index key

values. You cannot specify a unique constraint on a hashed index.

db.collection.createIndex(<key and index type specification>, { unique: true })

If a document does not have a value for the indexed field in a unique index, the index will store a null value for

this document. Because of the unique constraint, MongoDB will only permit one document that lacks the

indexed field.

 Text Indexes: support text search queries on string content. text indexes can include any field whose value is a

string or an array of string elements. Case insensitive. Diacritic insensitive. Can also create a compound index

https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-unique/#index-type-unique
https://docs.mongodb.com/manual/core/index-sparse/
https://docs.mongodb.com/manual/core/index-ttl/
https://docs.mongodb.com/manual/tutorial/expire-data/
https://docs.mongodb.com/manual/tutorial/expire-data/
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-secondary
https://docs.mongodb.com/manual/core/index-creation/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/core/index-unique/
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#db.collection.createIndex
https://docs.mongodb.com/manual/core/index-compound/#index-type-compound
https://docs.mongodb.com/manual/core/index-compound/#index-type-compound
https://docs.mongodb.com/manual/core/index-hashed/#index-type-hashed
https://docs.mongodb.com/manual/core/index-text/

10

except other special index types multi-key, geospatial. If the compound text index includes keys preceding the

text index key, to perform a $text search, the query predicate must include equality match conditions on the

preceding keys. A collection can have at most one text index.

o db.collection.createIndex({ textfield: “text”}) to create an Index on key textfield. Can also include

wildcards for indexes on multiple text fields, e.g. createIndex({ te*tfield: “text”})

o db.collection.find({text: {search: “trees cat” }}, {score:{$meta: “test score”}}) to search text with

scoring. Returns any document with tree, trees, cat, cats, tree cat, cat tree, cats trees, trees cats, etc.

Supports text search for various languages, Ignores stop words (a, the, an, and, etc.)

o text indexes can be large. They contain one index entry for each unique post-stemmed word in each

indexed field for each document inserted.

o Building a text index is very similar to building a large multi-key index and will take longer than building

a simple ordered (scalar) index on the same data.

o When building a large text index on an existing collection, ensure that you have a sufficiently high limit

on open file descriptors. See the recommended settings.

o text indexes will impact insertion throughput because MongoDB must add an index entry for each

unique post-stemmed word in each indexed field of each new source document.

o Additionally, text indexes do not store phrases or information about the proximity of words in the

documents. As a result, phrase queries will run much more effectively when the entire collection fits in

RAM.

o For each indexed field in the document, MongoDB multiplies the number of matches by the weight and

sums the results. Using this sum, MongoDB then calculates the score for the document. See $meta

operator for details on returning and sorting by text scores.

3.3 Index Use
When developing your indexing strategy you should have a deep understanding of your application’s queries. Before you

build indexes, map out the types of queries you will run so that you can build indexes that reference those fields.

Indexes come with a performance cost, but are more than worth the cost for frequent queries on large data set. Indexes

support queries, update operations, sorts, and some phases of the aggregation pipeline.

 Index Intersection: MongoDB can use the intersection of indexes to fulfill queries. For queries that specify

compound query conditions, if one index can fulfill a part of a query condition, and another index can fulfill

another part of the query condition, then MongoDB can use the intersection of the two indexes to fulfill the

query. Whether the use of a compound index or the use of an index intersection is more efficient depends on

the particular query and the system.

 Background/Foreground Operation: By default, creating an index blocks all other operations on a database.

When building an index on a collection, the database that holds the collection is unavailable for read or write

operations until the index build completes. For potentially long running index building operations, consider the

background operation so that the MongoDB database remains available during the index building operation.

 Build Indexes on Replica Sets: For replica sets, secondaries will begin building indexes after the primary finishes
building the index. In sharded clusters, the mongos will send createIndex() to the primary members of the
replica set for each shard, which then replicate to the secondaries after the primary finishes building the index.

 Covered Queries: When the query criteria and the projection of a query include only the indexed fields,

MongoDB will return results directly from the index without scanning any documents or bringing documents

into memory. These covered queries can be very efficient. To determine whether a query is a covered query, use

the db.collection.explain() or the explain() method and review the results.

An index cannot cover a query if:
o any of the indexed fields in any of the documents in the collection includes an array. If an indexed field is

an array, the index becomes a multi-key index and cannot support a covered query.

https://docs.mongodb.com/manual/reference/operator/query/text/#op._S_text
https://docs.mongodb.com/manual/reference/ulimit/
https://docs.mongodb.com/manual/reference/operator/projection/meta/#proj._S_meta
https://docs.mongodb.com/manual/core/aggregation-pipeline/#aggregation-pipeline-operators-and-performance
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#db.collection.createIndex
https://docs.mongodb.com/manual/core/query-optimization/#read-operations-covered-query
https://docs.mongodb.com/manual/reference/glossary/#term-projection
https://docs.mongodb.com/manual/reference/method/db.collection.explain/#db.collection.explain
https://docs.mongodb.com/manual/reference/method/cursor.explain/#cursor.explain
https://docs.mongodb.com/manual/reference/explain-results/#explain-output-covered-queries
https://docs.mongodb.com/manual/core/index-multikey/#index-type-multikey

11

o any of the indexed fields in the query predicate or returned in the projection are fields in embedded

documents.

o Restrictions on Sharded Collection: An index cannot cover a query on a sharded collection when run

against a mongos if the index does not contain the shard key, with the following exception for the _id

index: If a query on a sharded collection only specifies a condition on the _id field and returns only the

_id field, the _id index can cover the query when run against a mongos even if the _id field is not the

shard key.

o To determine whether a query is a covered query, use the db.collection.explain() or the

explain() method and review the results.

Generally, MongoDB only uses one index to fulfill most queries. However, each clause of an $or query may use a

different index, and starting in 2.6, MongoDB can use an intersection of multiple indexes.

 You can force MongoDB to use a specific index using the hint() method.

3.4 Index Restrictions

 Index Key Limit: The total size of an index entry, which can include structural overhead depending on the BSON

type, must be less than 1024 bytes. You cannot insert, update, mongodump etc. an index exceeding the index

key limit.

 For a compound multikey index, each indexed document can have at most one indexed field whose value is an

array. As such, you cannot create a compound multikey index if more than one to-be-indexed field of a

document is an array. Or, if a compound multikey index already exists, you cannot insert a document that would

violate this restriction.

 A single collection can have no more than 64 indexes.

 Fully qualified index names, which includes the namespace and the dot separators (i.e. <database

name>.<collection name>.$<index name>), cannot be longer than 128 characters.

 There can be no more than 31 fields in a compound index.

 A multikey index cannot support a covered query.

 Other restrictions apply to Geospatial and 2dsphere indexes.

4.0 Data Modeling
The key challenge in data modeling is balancing the needs of the application, the performance characteristics of the

database engine, and the data retrieval patterns. When designing data models, always consider the application usage of

the data (i.e. queries, updates, and processing of the data) as well as the inherent structure of the data itself.

There are two tools that allow applications to represent these relationships: references and embedded documents.

 References store the relationships between data by including links or references from one document to another.

Applications can resolve these references to access the related data. Broadly, these are normalized data models.

 Embedded documents capture relationships between data by storing related data in a single document

structure. MongoDB documents make it possible to embed document structures in a field or array within a

document. These denormalized data models allow applications to retrieve and manipulate related data in a

single database operation.

4.1 Document Growth
Some updates, such as pushing elements to an array or adding new fields, increase a document’s size. For the MMAPv1

storage engine, if the document size exceeds the allocated space for that document, MongoDB relocates the document

on disk. When using the MMAPv1 storage engine, growth consideration can affect the decision to normalize or

denormalize data. See Document Growth Considerations.

https://docs.mongodb.com/manual/reference/glossary/#term-shard
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/method/db.collection.explain/#db.collection.explain
https://docs.mongodb.com/manual/reference/method/cursor.explain/#cursor.explain
https://docs.mongodb.com/manual/reference/explain-results/#explain-output-covered-queries
https://docs.mongodb.com/manual/reference/operator/query/or/#op._S_or
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/reference/method/cursor.hint/#cursor.hint
https://docs.mongodb.com/manual/core/index-compound/#index-type-compound
https://docs.mongodb.com/manual/core/index-multikey/#index-type-multikey
https://docs.mongodb.com/manual/core/query-optimization/#covered-queries
https://docs.mongodb.com/master/reference/database-references/
https://docs.mongodb.com/master/reference/glossary/#term-document
https://docs.mongodb.com/master/core/data-model-operations/#data-model-document-growth

12

4.2 Data Use and Performance
When designing a data model, consider how applications will use your database. For instance, if your application only

uses recently inserted documents, consider using Capped Collections. Or if your application needs are mainly read

operations to a collection, adding indexes to support common queries can improve performance. See Operational

Factors and Data Models.

4.3 Working Set
The working set is the portion of your data that clients access most often. This includes Documents and Indexes. working

set should stay in memory to achieve good performance. Otherwise many random disk IO’s will occur, and unless you

are using SSD, this can be quite slow. Solid state drives (SSDs) can outperform spinning hard disks (HDDs) by 100 times or

more for random workloads.

One area to watch specifically in managing the size of your working set is index access patterns. If you are inserting into

indexes at random locations (as would happen with id’s that are randomly generated by hashes), you will continually be

updating the whole index. If instead you are able to create your id’s in approximately ascending order (for example, day

concatenated with a random id), all the updates will occur at the right side of the b-tree and the working set size for

index pages will be much smaller.

The default WiredTiger cache size value assumes that there is a single mongod instance per machine. If a single machine

contains multiple MongoDB instances, then you should decrease the setting to accommodate the other mongod

instances.

4.4 Modeling Tree Structures
Use tree data structures to model large hierarchical or nested data relationships. Multiple queries may be required to

retrieve subtrees. Parent, Child, Ancestor, Paths, Nested Set references can be used to describe a hierarchy.

4.5 Data Storage Engines
The storage engine is the component of the database that is responsible for managing how data is stored, both in

memory and on disk. MongoDB supports multiple storage engines, as different engines perform better for specific

workloads.

 WiredTiger is the default storage engine starting in MongoDB 3.2. It is well-suited for most workloads and is

recommended for new deployments. WiredTiger provides a document-level concurrency model, checkpointing,

and compression, among other features.

 MMAPv1 is the original MongoDB storage engine and is the default storage engine for MongoDB versions before

3.2. It performs well on workloads with high volumes of reads and writes, as well as in-place updates.

 For the MMAPv1 storage engine, if an update operation causes a document to exceed the currently allocated

record size, MongoDB relocates the document on disk with enough contiguous space to hold the document.

Updates that require relocations take longer than updates that do not, particularly if the collection has indexes.

 The In-Memory Storage Engine is available in MongoDB Enterprise. Rather than storing documents on-disk, it

retains them in-memory for more predictable data latencies.

5.0 Aggregation
Aggregations operations process data records and return computed results. Aggregation operations group values from

multiple documents together, and can perform a variety of operations on the grouped data to return a single result.

MongoDB provides three ways to perform aggregation: the aggregation pipeline, the map-reduce function, and single

purpose aggregation methods.

 Aggregation Pipeline: MongoDB’s aggregation framework is modeled on the concept of data processing

pipelines. Documents enter a multi-stage pipeline that transforms the documents into an aggregated result. The

https://docs.mongodb.com/master/core/capped-collections/
https://docs.mongodb.com/master/core/data-model-operations/
https://docs.mongodb.com/master/core/data-model-operations/
https://docs.mongodb.com/master/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/master/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/master/applications/data-models-tree-structures/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/reference/glossary/#term-storage-engine
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/reference/glossary/#term-record-size
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/#aggregation-framework
https://docs.mongodb.com/manual/aggregation/#aggregation-map-reduce
https://docs.mongodb.com/manual/aggregation/#single-purpose-agg-operations
https://docs.mongodb.com/manual/aggregation/#single-purpose-agg-operations
https://docs.mongodb.com/manual/core/aggregation-pipeline/

13

most basic pipeline stages provide filters that operate like queries and document transformations that modify

the form of the output document. Can operate on a sharded collection. Can use indexes to improve its

performance during some of its pipeline stages. In addition, the aggregation pipeline has an internal

optimization phase. See Pipeline Operators and Indexes and Aggregation Pipeline Optimization for details.

o Result Size Restrictions: 16MB. When returning a cursor or storing the results in a collection, each

document in the result set is subject to the BSON Document Size limit, currently 16 megabytes; if any

single document that exceeds the BSON Document Size limit, the command will produce an error.

The limit only applies to the returned documents; during the pipeline processing, the documents may

exceed this size.

o Memory Restrictions: Pipeline stages have a limit of 100 megabytes of RAM. If a stage exceeds this limit,

MongoDB will produce an error. To allow for the handling of large datasets, use the allowDiskUse

option to enable aggregation pipeline stages to write data to temporary files.

o In the db.collection.aggregate method, pipeline stages appear in an array. Documents pass

through the stages in sequence.

o Pipeline Operators and Indexes: The $match and $sort pipeline operators can take advantage of an

index when they occur at the beginning of the pipeline.

 Map-Reduce: MongoDB also provides map-reduce operations to perform aggregation. In general, map-reduce

operations have two phases: a map stage that processes each document and emits one or more objects for each

input document, and reduce phase that combines the output of the map operation.

Single Purpose Aggregation Operations: MongoDB also provides db.collection.count(),

db.collection.group(), db.collection.distinct(). special purpose database commands. All of these

operations aggregate documents from a single collection. While these operations provide simple access to common

aggregation processes, they lack the flexibility and capabilities of the aggregation pipeline and map-reduce.

Operator expressions are similar to functions that take arguments. In general, these expressions take an array of

arguments

Boolean expressions evaluate their argument expressions as booleans and return a boolean as the result.

$not

Returns the boolean value that is the opposite of its argument expression. Accepts a single argument

expression.

Aggregation Quick Reference

Aggregation Pipeline and Sharded Collections

6.0 Replication: PRIMARY, SECONDARY, ARBITER

Figure 1: Replica Set

https://docs.mongodb.com/manual/core/sharding-introduction/
https://docs.mongodb.com/manual/core/aggregation-pipeline/#aggregation-pipeline-operators-and-performance
https://docs.mongodb.com/manual/core/aggregation-pipeline-optimization/
https://docs.mongodb.com/manual/reference/limits/#BSON-Document-Size
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/#db.collection.aggregate
https://docs.mongodb.com/manual/reference/operator/aggregation/match/#pipe._S_match
https://docs.mongodb.com/manual/reference/operator/aggregation/sort/#pipe._S_sort
https://docs.mongodb.com/manual/core/map-reduce/
https://docs.mongodb.com/manual/reference/method/db.collection.count/#db.collection.count
https://docs.mongodb.com/manual/reference/method/db.collection.group/#db.collection.group
https://docs.mongodb.com/manual/reference/method/db.collection.distinct/#db.collection.distinct
https://docs.mongodb.com/manual/reference/operator/aggregation/not/#exp._S_not
https://docs.mongodb.com/manual/meta/aggregation-quick-reference/
https://docs.mongodb.com/manual/core/aggregation-pipeline-sharded-collections/
https://docs.mongodb.com/manual/replication/

14

A replica set in MongoDB is a group of mongod processes that maintain the same data set on different servers thereby

providing redundancy and high availability. The members of a replica set are:

 Primary. The primary receives all write operations. MongoDB applies write operations on the primary and then

records the operations on the primary’s oplog. Secondary members replicate this log and apply the operations

to their data sets.

 Secondaries replicate operations from the primary to maintain an identical data set. Secondaries may have

additional configurations for special usage profiles. For example, secondaries may be non-voting or priority 0.

 You can also maintain an arbiter as part of a replica set. Arbiters do not keep a copy of the data. However,

arbiters play a role in the elections that select a primary if the current primary is unavailable. Arbiters can

resolve elections in cases of an even number of replica set members and unexpected network partitions.

The minimum requirements for a replica set are: A primary, a secondary, and an arbiter. Most deployments, however,

will keep three members that store data: A primary and two secondary members.

6.1. Write Concern
Write concern describes the level of acknowledgement requested from MongoDB for write operations to a standalone

mongod or to replica sets or to sharded clusters. In sharded clusters, mongos instances will pass the write concern on to

the shards.

 0 = Requests no acknowledgment of the write operation. However, w: 0 may return information about:
o socket exceptions and networking errors to the application.

o If you specify w: 0 but include j: true, the j: true prevails to request acknowledgement from the

standalone mongod or the primary of a replica set.

 1 = Primary only (default) Requests acknowledgement that the write operation has propagated to the
o standalone mongod or the primary in a replica set.

 "majority" = Requests acknowledgment that write operations have propagated to the majority of voting nodes
[1],

o including the primary, and have been written to the on-disk journal for these nodes.

 <tag> = Requests acknowledgement that the write operations have propagated to a replica set member with the
specified tag.

 J option = Journal Option. Requests acknowledgement that the mongod instances, as specified in the w: <value>,

 have written to the on-disk journal. j: true does not by itself guarantee that the write will not be rolled

 back due to replica set primary failover.

 w option = wtimeout. This option specifies a time limit, in milliseconds, for the write concern.

 wtimeout is only applicable for w values greater than 1.

6.2 Read Preference, Example: db.collection.find().readPref({mode: 'nearest', tags: [{'dc': 'east'}]})

 primary = (Default). All operations read from the current replica set primary.

 primaryPreferred = In most situations, operations read from the primary but if it is unavailable, operations read
from secondary members.

 secondary = All operations read from the secondary members of the replica set.

 secondaryPreferred = read from secondary members but if no secondary members are available, operations
read from the primary.

 nearest = read from member of the replica set with the least network latency, irrespective of the member’s type
(P/S).

https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/core/replica-set-primary/
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-secondary-members
https://docs.mongodb.com/manual/core/replica-set-secondary/
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-non-voting-members
https://docs.mongodb.com/manual/core/replica-set-priority-0-member/#replica-set-secondary-only-members
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-arbiters
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-primary-member
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-secondary-members
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-arbiters
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-primary-member
https://docs.mongodb.com/manual/core/replica-set-members/#replica-set-secondary-members
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/read-preference/

15

 The following Read Preference may return “stale” data: primaryPreferred, secondary, secondaryPreferred,

nearest. i.e. only primary Read Preference ensures “fresh” data.

6.3 Read Concern

 "local" = Default. The query returns the instance’s most recent copy of data. Provides no guarantee that the data
has been written to a majority of the replica set members.

 "majority" = The query returns the instance’s most recent copy of data confirmed as written to a majority of
members in the replica set.

o Note: To use a read concern level of "majority", you must use the WiredTiger storage engine and start
the mongod instances with the --enableMajorityReadConcern command line option(or the
replication.enableMajorityReadConcern setting if using a configuration file).

o To ensure that a single thread can read its own writes, use "majority" read concern and "majority" write

concern against the primary of the replica set.

6.4 Elections/Voting
Replica sets use elections to determine which set member will become primary. Elections occur after initiating a replica

set, and also any time the primary becomes unavailable. The primary is the only member in the set that can accept write

operations. If a primary becomes unavailable, elections allow the set to recover normal operations without manual

intervention. Elections are part of the failover process.

When a primary does not communicate with the other members of the set for more than 10 seconds, an eligible

secondary will hold an election to elect itself the new primary. The first secondary to hold an election and receive a

majority of the members’ votes becomes primary. A member’s priority affects both the timing and the outcome of

elections; secondaries with higher priority call elections relatively sooner than secondaries with lower priority, and are

also more likely to win. Replica set members continue to call elections until the highest priority member available

becomes primary.

 A replica set can have up to 50 members, but only 7 voting members, non-voting members allow a replica

set to have more than seven members.

 To configure a member as non-voting, set its members[n].votes value to 0.

 If your replica set has an even number of members, add an arbiter to ensure that members can quickly obtain a

majority of votes in an election for primary.

 In general and when possible, all members should have only 1 vote. This prevents intermittent ties, deadlocks,

or the wrong members from becoming primary.

A network partition may segregate a primary into a partition with a minority of nodes. When the primary detects that it

can only see a minority of nodes in the replica set, the primary steps down as primary and becomes a secondary.

Independently, a member in the partition that can communicate with a majority of the nodes (including itself) holds an

election to become the new primary.

6.5 Priority
The priority settings of replica set members affect both the timing and the outcome of elections for primary. Higher-

priority members are more likely to call elections, and are more likely to win. Use this setting to ensure that some

members are more likely to become primary and that others can never become primary. The higher the number, the

higher the priority.

 To modify priorities, you update the members array in the replica configuration object. The array index begins

with 0. Do not confuse this index value with the value of the replica set member’s members[n]._id field in the

array.

https://docs.mongodb.com/manual/core/replica-set-elections/
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/core/replica-set-high-availability/#replica-set-failover-administration
https://docs.mongodb.com/manual/reference/limits/#Number-of-Members-of-a-Replica-Set
https://docs.mongodb.com/manual/reference/limits/#Number-of-Voting-Members-of-a-Replica-Set
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n].votes
https://docs.mongodb.com/manual/tutorial/add-replica-set-arbiter/
https://docs.mongodb.com/manual/reference/glossary/#term-network-partition
https://docs.mongodb.com/manual/core/replica-set-elections/
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n]._id

16

 The value of priority can be any floating point (i.e. decimal) number between 0 and 1000. The default value for
the priority field is 1.

 To block a member from seeking election as primary, assign it a priority of 0. Hidden members and delayed
members have priority set to 0.

 For arbiters, the default priority value is 1; however, arbiters cannot become primary regardless of the
configured value.

6.6 Failover/Rollover
A rollback reverts write operations on a former primary when the member rejoins its replica set after a failover. A

rollback is necessary only if the primary had accepted write operations that the secondaries had not successfully

replicated before the primary stepped down. When the primary rejoins the set as a secondary, it reverts, or “rolls back,”

its write operations to maintain database consistency with the other members.

A rollback does not occur if the write operations replicate to another member of the replica set before the primary steps

down and if that member remains available and accessible to a majority of the replica set.

 When a rollback does occur, MongoDB writes the rollback data to BSON files in the rollback/ folder under the

database’s dbPath directory.

 To prevent rollbacks of data that have been acknowledged to the client, use w: majority write concern to

guarantee that the write operations propagate to a majority of the replica set nodes before returning with

acknowledgement to the issuing client.

A mongod instance will not rollback more than 300 megabytes of data. If your system must rollback more than 300

megabytes, you must manually intervene to recover the data. In this situation, save the data directly or force the

member to perform an initial sync. To force initial sync, sync from a “current” member of the set by deleting the content

of the dbPath directory for the member that requires a larger rollback.

6.7 Hidden Replica Set Member
A hidden member maintains a copy of the primary’s data set but is invisible to client applications. Hidden members are

good for workloads with different usage patterns from the other members in the replica set. Hidden members must

always be priority 0 members and so cannot become primary. The db.isMaster() method does not display hidden

members. Hidden members, however, may vote in elections. The most common use of hidden nodes is to support

delayed members.

 Read Operations: Clients will not distribute reads with the appropriate read preference to hidden members. As a

result, these members receive no traffic other than basic replication. Use hidden members for dedicated tasks

such as reporting and backups.

 Delayed members should be hidden. In a sharded cluster, mongos do not interact with hidden members.

 Voting: Hidden members may vote in replica set elections. If you stop a voting hidden member, ensure that the

set has an active majority or the primary will step down.

6.8 Delayed Replica Set Member
Delayed members contain copies of a replica set’s data set. However, a delayed member’s data set reflects an earlier, or

delayed, state of the set.

Because delayed members are a “rolling backup” or a running “historical” snapshot of the data set, they may help you

recover from various kinds of human error. For example, a delayed member can make it possible to recover from

unsuccessful application upgrades and operator errors including dropped databases and collections.

 Must be priority 0 members. Set the priority to 0 to prevent a delayed member from becoming primary.

 Should be hidden members. Always prevent applications from seeing and querying delayed members.

 do vote in elections for primary, if members[n].votes is set to 1.

https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n].priority
https://docs.mongodb.com/manual/core/replica-set-hidden-member/#replica-set-hidden-members
https://docs.mongodb.com/manual/core/replica-set-delayed-member/#replica-set-delayed-members
https://docs.mongodb.com/manual/core/replica-set-delayed-member/#replica-set-delayed-members
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/reference/glossary/#term-failover
https://docs.mongodb.com/manual/reference/glossary/#term-secondary
https://docs.mongodb.com/manual/reference/glossary/#term-bson
https://docs.mongodb.com/manual/reference/configuration-options/#storage.dbPath
https://docs.mongodb.com/manual/reference/write-concern/#wc-w
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/configuration-options/#storage.dbPath
https://docs.mongodb.com/manual/core/replica-set-hidden-member/
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/core/replica-set-priority-0-member/#replica-set-secondary-only-members
https://docs.mongodb.com/manual/reference/method/db.isMaster/#db.isMaster
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/core/replica-set-priority-0-member/#replica-set-secondary-only-members
https://docs.mongodb.com/manual/core/replica-set-hidden-member/#replica-set-hidden-members
https://docs.mongodb.com/manual/reference/glossary/#term-election
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n].votes

17

 Delayed members copy and apply operations from the source oplog on a delay. When choosing the

amount of delay, consider that the amount of delay:

 must be equal to or greater than your expected maintenance window durations.

 must be smaller than the capacity of the oplog. For more information on oplog size, see Oplog Size. The
length of the secondary members[n].slaveDelay must fit within the window of the oplog. If the oplog is
shorter than the members[n].slaveDelay window, the delayed member cannot successfully replicate
operations.

 In sharded clusters, delayed members have limited utility when the balancer is enabled. Because delayed
members replicate chunk migrations with a delay, the state of delayed members in a sharded cluster are not
useful for recovering to a previous state of the sharded cluster if any migrations occur during the delay window.

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
cfg.members[0].slaveDelay = 3600
rs.reconfig(cfg)

6.9.0 Replica Set Oplog
The oplog (operations log) is a special capped collection in the PRIMARY “local” collection that keeps a rolling record of

all operations that modify the data stored in your databases. MongoDB applies database operations on the primary and

then records the operations on the primary’s oplog. The secondary members then copy and apply these operations in an

asynchronous process. All replica set members contain a copy of the oplog, in the local.oplog.rs collection, which

allows them to maintain the current state of the database.

 Whether applied once or multiple times to the target dataset, each operation in the oplog produces the same

results, i.e. each operation in the oplog is idempotent.

 Idempotent: The quality of an operation to produce the same result given the same input, whether run

once or run multiple times.

When you start a replica set member for the first time, MongoDB creates an oplog of a default size.

For UNIX and Windows systems. The default oplog size depends on the storage engine:

Storage Engine Default Oplog Size Lower Bound Upper Bound

In-Memory Storage Engine 5% of physical memory 50 MB 50 GB

WiredTiger Storage Engine 5% of free disk space 990 MB 50 GB

MMAPv1 Storage Engine 5% of free disk space 990 MB 50 GB

To view oplog status, including the size and the time range of operations, issue the rs.printReplicationInfo()
method. To resize the oplog after replica set initiation, use the Change the Size of the Oplog procedure.

Replication lag is a delay between an operation on the primary and the application of that operation from the oplog to
the secondary. To check the current length of replication lag: call the rs.printSlaveReplicationInfo() method.
Minimum lag times are essential to overall database consistency.

A larger oplog can give a replica set a greater tolerance for lag, and make the set more resilient. Increase Oplog storage

under the following usage patterns: 1. Updates to multiple documents at once 2. Deletions equal the same amount of

data as Inserts 3. Significant number of in-place Updates

https://docs.mongodb.com/manual/reference/glossary/#term-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog-sizing
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n].slaveDelay
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.members[n].slaveDelay
https://docs.mongodb.com/manual/reference/glossary/#term-balancer
https://docs.mongodb.com/manual/reference/glossary/#term-oplog
https://docs.mongodb.com/manual/reference/glossary/#term-capped-collection
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-secondary
https://docs.mongodb.com/manual/reference/local-database/#local.oplog.rs
https://docs.mongodb.com/manual/reference/glossary/#term-idempotent
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/reference/method/rs.printReplicationInfo/#rs.printReplicationInfo
https://docs.mongodb.com/manual/tutorial/change-oplog-size/
https://docs.mongodb.com/manual/reference/glossary/#term-primary
https://docs.mongodb.com/manual/reference/glossary/#term-oplog
https://docs.mongodb.com/manual/reference/glossary/#term-secondary
https://docs.mongodb.com/manual/reference/method/rs.printSlaveReplicationInfo/#rs.printSlaveReplicationInfo
https://docs.mongodb.com/manual/reference/glossary/#term-oplog

18

The oplog should be long enough to hold all transactions for the longest downtime you expect on a secondary. At a

minimum, an oplog should be able to hold minimum 24 hours of operations. Some prefer 72 hours.

7.0 Sharded Clusters
Vertical scaling adds more CPU and storage resources to increase capacity. Scaling by adding capacity has limitations:

high performance systems with large numbers of CPUs and large amount of RAM are disproportionately more expensive

than smaller systems. Additionally, cloud-based providers may only allow users to provision smaller instances. As a

result there is a practical maximum capability for vertical scaling.

Sharding, or horizontal scaling, by contrast, divides the data set and distributes the data over multiple servers, or

shards. Each shard is an independent database, and collectively, the shards make up a single logical database. MongoDB

uses sharding to support deployments with very large data sets and high throughput operations.

Use sharded clusters if:

 Your data set approaches or exceeds the storage capacity of a single MongoDB instance.

 The size of your system’s active working set will soon exceed the capacity of your system’s maximum RAM.

 A single MongoDB instance cannot meet the demands of your write operations, and all other approaches have

not reduced contention.

Figure 2, Typical Sharded Cluster Architecture

7.1 Sharded Cluster Components

 Shards store the data. To provide high availability and data consistency, in a production sharded cluster, each

shard is a replica set [1]. For more information on replica sets, see Replica Sets.

 Query Routers, or mongos instances, interface with client applications and direct operations to the appropriate

shard or shards. A client sends requests to a mongos, which then routes the operations to the shards and

returns the results to the clients. A sharded cluster can contain more than one mongos to divide the client

request load, and most sharded clusters have more than one mongos for this reason.

 Config servers store the cluster’s metadata. This data contains a mapping of the cluster’s data set to the shards.

The query router uses this metadata to target operations to specific shards.

Note: Changed in version 3.2: Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica

set. The replica set config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the use of three

https://docs.mongodb.com/manual/core/sharding-introduction/
https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster
https://docs.mongodb.com/manual/reference/glossary/#term-working-set
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/core/sharding-introduction/#dev-only-shard-deployment
https://docs.mongodb.com/manual/core/replication/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/core/replication-introduction/
https://docs.mongodb.com/manual/core/replication-introduction/
https://docs.mongodb.com/manual/core/wiredtiger/

19

mirrored mongod instances for config servers. Use the sh.status() method in the mongo shell to see an overview of

the cluster.

7.2 Data Partitioning/Shard Key
MongoDB distributes data, or shards, at the collection level. Sharding partitions a collection’s data by the shard key.

Every database has a primary shard that holds all the un-sharded collections for a database.

To shard a collection, you need to select a shard key. A shard key is either an indexed field or an indexed compound field

that exists in every document in the collection. MongoDB divides the shard key values into chunks and distributes the

chunks evenly across the shards. To divide the shard key values into chunks, MongoDB uses either range based

partitioning or hash based partitioning. See the Shard Key documentation for more information. The index on the shard

key can be a compound index or hashed index but cannot be a multikey index, a text index or a geospatial index.

 If you shard a collection without any documents and without such an index, sh.shardCollection() creates

the index on the shard key. If the collection already has documents, you must create the index before using

sh.shardCollection().

For range-based sharding, MongoDB divides the data set into ranges determined by the shard key values to provide

range based partitioning. For hash based partitioning, MongoDB computes a hash of a field’s value, and then uses these

hashes to create chunks.

MongoDB allows administrators to direct the balancing policy using tag aware sharding. Administrators create and

associate tags with ranges of the shard key, and then assign those tags to the shards. Then, the balancer migrates tagged

data to the appropriate shards and ensures that the cluster always enforces the distribution of data that the tags

describe.

Tags are the primary mechanism to control the behavior of the balancer and the distribution of chunks in a cluster. Most

commonly, tag aware sharding serves to improve the locality of data for sharded clusters that span multiple data

centers.

The addition of new data or the addition of new servers can result in data distribution imbalances within the cluster,

such as a particular shard contains significantly more chunks than another shard or a size of a chunk is significantly

greater than other chunk sizes.

MongoDB ensures a balanced cluster using two background processes: splitting and the balancer.

 The chunk size is user configurable. The default chunk size is 64MB.

 Splitting only creates metadata changes, Balancing migrates data between Shards.

 Finally, the metadata regarding the location of the chunk on config server is updated.

The balancer will not begin moving data across shards until the imbalance of chunks among the shards exceeds the

migration threshold. An insufficiently granular shard key can result in chunks that are “unsplittable”. Splits cannot be

“undone”. If you increase the chunk size, existing chunks must grow through inserts or updates until they reach the new

size.

Shard Keys are immutable: After you insert a document into a sharded collection, you cannot change the document’s

value for the field or fields that comprise the shard key. The update() operation will not modify the value of a shard

key in an existing document.

MongoDB does not support creating new unique indexes in sharded collections, because insert and indexing operations

are local to each shard, and will not allow you to shard collections with unique indexes on fields other than the _id field.

MongoDB can enforce uniqueness on the shard key. MongoDB enforces uniqueness on the entire key combination, and

not specific components of the shard key. In most cases, the best shard keys are compound keys that include elements

https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/method/sh.status/#sh.status
https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/reference/glossary/#term-primary-shard
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key
https://docs.mongodb.com/manual/reference/glossary/#term-chunk
https://docs.mongodb.com/manual/core/sharding-shard-key/
https://docs.mongodb.com/master/core/index-multikey/#index-type-multikey
https://docs.mongodb.com/master/core/index-text/
https://docs.mongodb.com/master/applications/geospatial-indexes/#index-feature-geospatial
https://docs.mongodb.com/manual/reference/method/sh.shardCollection/#sh.shardCollection
https://docs.mongodb.com/manual/reference/method/sh.shardCollection/#sh.shardCollection
https://docs.mongodb.com/manual/core/sharding-balancing/#sharding-balancing
https://docs.mongodb.com/manual/core/sharding-balancing/#sharding-migration-thresholds
https://docs.mongodb.com/master/reference/method/db.collection.update/#db.collection.update
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key

20

that permit write scaling and query isolation, as well as high cardinality. These ideal shard keys are not often the same

keys that require uniqueness and enforcing unique values in these collections requires a different approach.

7.3 Config Servers
Config servers hold the metadata about the cluster, such as the shard location of the data. The mongos instances cache

this data and use it to route reads and writes to shards.

Changed in version 3.2: Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica set.

Using a replica set for the config servers improves consistency across the config servers. In addition, using a replica set

for config servers allows a sharded cluster to have more than 3 config servers since a replica set can have up to 50

members. To deploy config servers as a replica set, the config servers must run the WiredTiger storage engine.

The following restrictions apply to a replica set configuration when used for config servers:

 Must have zero arbiters.

 Must have no delayed members.

 Must build indexes (i.e. no member should have buildIndexes setting set to false).

7.4 Mongos
mongos stands for “MongoDB Shard,” is a routing service for MongoDB shard configurations that processes queries

from the application layer, and determines the location of this data in the sharded cluster, in order to complete these

operations. From the perspective of the application, a mongos instance behaves identically to any other MongoDB

instance.

Generally, the fastest queries in a sharded environment are those that mongos will route to a single shard, using the

shard key and the cluster meta data from the config server. For queries that don’t include the shard key, mongos must

query all shards, wait for their responses and then return the result to the application. These “scatter/gather” queries

can be long running operations.

Pre-Splitting Data: Only pre-split an empty collection.

Manual Chunk Splitting

Merge Chunks

8.0 Security

8.1 Authentication Mechanism
MongoDB supports multiple authentication mechanisms that can be integrated into your existing authentication

environment.

 SCRAM-SHA-1
 MongoDB Challenge and Response (MONGODB-CR)

Changed in version 3.0: New challenge-response users created in 3.0 will use SCRAM-SHA-1. If using 2.6 user data,
MongoDB 3.0 will continue to use the MONGODB-CR.

 x.509 Certificate Authentication.

In addition to supporting the aforementioned mechanisms, MongoDB Enterprise also supports the following
mechanisms:

https://docs.mongodb.com/v2.6/core/sharding-shard-key/#sharding-shard-key-write-scaling
https://docs.mongodb.com/v2.6/core/sharding-shard-key/#sharding-shard-key-query-isolation
https://docs.mongodb.com/v2.6/tutorial/choose-a-shard-key/#sharding-shard-key-cardinality
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
https://docs.mongodb.com/manual/reference/program/mongos/
https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#sharding-config-server
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/master/tutorial/create-chunks-in-sharded-cluster/
https://docs.mongodb.com/master/tutorial/split-chunks-in-sharded-cluster/
https://docs.mongodb.com/master/tutorial/merge-chunks-in-sharded-cluster/
https://docs.mongodb.com/manual/core/authentication-mechanisms/#security-authentication-mechanisms
https://docs.mongodb.com/manual/core/security-scram-sha-1/#authentication-scram-sha-1
https://docs.mongodb.com/manual/core/security-mongodb-cr/#authentication-mongodb-cr
https://docs.mongodb.com/manual/core/security-x.509/#security-auth-x509

21

 LDAP proxy authentication, and
 Kerberos authentication.

In addition to verifying the identity of a client, MongoDB can require members of replica sets and sharded clusters to

authenticate their membership to their respective replica set or sharded cluster. See Internal Authentication for more

information.

8.2 Users
To add a user, MongoDB provides the db.createUser() method. When adding a user, you can assign roles to the user

in order to grant privileges. MongoDB stores all user information, including name, password, and the user's

authentication database, in the system.users collection in the admin database.

 When adding a user, you create the user in a specific database. This database is the authentication database for
the user.

 A user can have privileges across different databases; i.e. a user’s privileges are not limited to the authentication
database. By assigning to the user roles in other databases, a user created in one database can have permissions
to act on other databases. For more information on roles, see Role-Based Access Control.

 The user’s name and authentication database serve as a unique identifier for that user. That is, if two users have
the same name but are created in different databases, they are two separate users. If you intend to have a
single user with permissions on multiple databases, create a single user with roles in the applicable databases
instead of creating the user multiple times in different databases.

To authenticate a user, either

 Use the command line authentication options (e.g. -u, -p, --authenticationDatabase) when connecting to the
mongod or mongos instance, or

 Connect first to the mongod or mongos instance, and then run the authenticate command or the db.auth()
method against the authentication database.

8.3 Sharded Cluster Users
To create users for a sharded cluster, connect to the mongos instance and add the users. Clients then authenticate these

users through the mongos instances.

However, some maintenance operations, such as cleanupOrphaned, compact, rs.reconfig(), require direct

connections to specific shards in a sharded cluster. To perform these operations, you must connect directly to

the shard and authenticate as a shard local administrative user.

To create a shard local administrative user, connect directly to the shard and create the user. MongoDB stores

shard local users in the admin database of the shard itself.

These shard local users are completely independent from the users added to the sharded cluster via mongos.

Shard local users are local to the shard and are inaccessible by mongos.

Direct connections to a shard should only be for shard-specific maintenance and configuration. In general,

clients should connect to the sharded cluster through the mongos.

8.3.1 Locahost Exception
The localhost exception allows you to enable access control and then create the first user in the system. With the

localhost exception, after you enable access control, connect to the localhost interface and create the first user in the

admin database. The first user must have privileges to create other users, such as a user with the userAdmin or

userAdminAnyDatabase role.

https://docs.mongodb.com/manual/core/authentication-mechanisms-enterprise/#security-auth-ldap
https://docs.mongodb.com/manual/core/authentication-mechanisms-enterprise/#security-auth-kerberos
https://docs.mongodb.com/manual/core/security-internal-authentication/#inter-process-auth
https://docs.mongodb.com/manual/core/security-internal-authentication/#inter-process-auth
https://docs.mongodb.com/manual/reference/method/db.createUser/#db.createUser
https://docs.mongodb.com/manual/core/authorization/
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.user
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.credentials
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.db
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.db
https://docs.mongodb.com/manual/reference/system-users-collection/
https://docs.mongodb.com/manual/core/authorization/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/command/authenticate/#dbcmd.authenticate
https://docs.mongodb.com/manual/reference/method/db.auth/#db.auth
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/command/cleanupOrphaned/#dbcmd.cleanupOrphaned
https://docs.mongodb.com/manual/reference/command/compact/#dbcmd.compact
https://docs.mongodb.com/manual/reference/method/rs.reconfig/#rs.reconfig
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase

22

 The localhost exception applies only when there are no users created in the MongoDB instance.

 In the case of a sharded cluster, the localhost exception applies to each shard individually as well as to the
cluster as a whole. Once you create a sharded cluster and add a user administrator through the mongos
instance, you must still prevent unauthorized access to the individual shards. Follow one of the following steps
for each shard in your cluster:

 Create an administrative user, or
 Disable the localhost exception at startup. To disable the localhost exception, set the

enableLocalhostAuthBypass parameter to 0.

8.4 Add Users
MongoDB employs role-based access control (RBAC) to determine access for users. A user is granted one or more roles

that determine the user’s access or privileges to MongoDB resources and the actions that user can perform. A user

should have only the minimal set of privileges required to ensure a system of least privilege. Each application and user of

a MongoDB system should map to a distinct user. This access isolation facilitates access revocation and ongoing user

maintenance.

8.5 Enable Client Access Control
Enabling access control requires authentication of every user. Once authenticated, users only have the privileges as

defined in the roles granted to the users.

To enable access control, use either the command line option --auth or security.authorization configuration file

setting.

With access control enabled, ensure you have a user with userAdmin or userAdminAnyDatabase role in the admin

database.

Note

The tutorial enables access control and uses the default authentication mechanism. To specify a different authentication

mechanism, see Authentication Mechanisms.

You can also enable client access control by enforcing internal authentication for replica sets or sharded clusters.

8.5.1 Considerations
You can create users before enabling access control or you can create users after enabling access control. If you enable

access control before creating any user, MongoDB provides a localhost exception which allows you to create a user

administrator in the admin database. Once created, authenticate as the user administrator to create additional users as

needed.

8.6 Built-in Roles
MongoDB provides built-in roles that provide the different levels of access commonly needed in a database system.

Built-in database user roles and database administration roles roles exist in each database. The admin database

contains additional roles.

8.6.1 User Roles
Every database includes the following roles:

read

Provides the ability to read data on all non-system collections and on the following system collections:
system.indexes, system.js, and system.namespaces collections.

readWrite

Provides all the privileges of the read role and the ability to modify data on all non-system collections and
the system.js collection.

https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/parameters/#param.enableLocalhostAuthBypass
https://docs.mongodb.com/manual/core/authorization/#roles
https://docs.mongodb.com/manual/reference/resource-document/#resource-document
https://docs.mongodb.com/manual/reference/privilege-actions/#security-user-actions
https://docs.mongodb.com/manual/reference/glossary/#term-least-privilege
https://docs.mongodb.com/manual/reference/configuration-options/#security.authorization
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/core/authentication-mechanisms/#authentication-mechanism-default
https://docs.mongodb.com/manual/core/authentication-mechanisms/
https://docs.mongodb.com/manual/core/security-internal-authentication/
https://docs.mongodb.com/manual/core/security-users/#localhost-exception
https://docs.mongodb.com/manual/reference/built-in-roles/#database-user-roles
https://docs.mongodb.com/manual/reference/built-in-roles/#database-administration-roles
https://docs.mongodb.com/manual/reference/built-in-roles/#read
https://docs.mongodb.com/manual/reference/system-collections/#%3Cdatabase%3E.system.indexes
https://docs.mongodb.com/manual/reference/system-collections/#%3Cdatabase%3E.system.js
https://docs.mongodb.com/manual/reference/system-collections/#%3Cdatabase%3E.system.namespaces
https://docs.mongodb.com/manual/reference/built-in-roles/#readWrite
https://docs.mongodb.com/manual/reference/built-in-roles/#read
https://docs.mongodb.com/manual/reference/system-collections/#%3Cdatabase%3E.system.js

23

8.6.2 Database Admin Roles
Every database includes the following database administration roles:

dbAdmin

Provides the ability to perform administrative tasks such as schema-related tasks, indexing, gathering
statistics. This role does not grant privileges for user and role management.

For the specific privileges granted by the role, see dbAdmin.

dbOwner

Provides the ability to perform any administrative action on the database. This role combines the privileges
granted by the readWrite, dbAdmin and userAdmin roles.

userAdmin

Provides the ability to create and modify roles and users on the current database. Since the userAdmin role
allows users to grant any privilege to any user, including themselves, the role also indirectly provides
superuser access to either the database or, if scoped to the admin database, the cluster.

8.6.3 Cluster Admin Roles
The admin database includes the following roles for administering the whole system rather than a specific database.

These roles include but are not limited to replica set and sharded cluster administrative functions.

clusterAdmin

Provides the greatest cluster-management access. This role combines the privileges granted by the
clusterManager, clusterMonitor, and hostManager roles. Additionally, the role provides the
dropDatabase action.

clusterManager

Provides management and monitoring actions on the cluster. A user with this role can access the
config and local databases, which are used in sharding and replication, respectively.

For the specific privileges granted by the role, see clusterManager.

clusterMonitor

Provides read-only access to monitoring tools, such as the MongoDB Cloud Manager and Ops
Manager monitoring agent.

hostManager Provides the ability to monitor and manage servers.

8.6.4 Backup and Restoration Roles
The admin database includes the following roles for backing up and restoring data:

backup

Provides privileges needed to back up data. This role provides sufficient privileges to use the

MongoDB Cloud Manager backup agent, Ops Manager backup agent, or to use mongodump.

For the specific privileges granted by the role, see backup.

restore

Provides privileges needed to restore data with mongorestore without the --oplogReplay option or

without system.profile collection data.

8.6.5 All-Database Roles
The admin database provides the following roles that apply to all databases in a mongod instance and are roughly

equivalent to their single-database equivalents:

https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#dbOwner
https://docs.mongodb.com/manual/reference/built-in-roles/#readWrite
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#superuser
https://docs.mongodb.com/manual/reference/glossary/#term-replica-set
https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterManager
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterMonitor
https://docs.mongodb.com/manual/reference/built-in-roles/#hostManager
https://docs.mongodb.com/manual/reference/privilege-actions/#authr.dropDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterManager
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterManager
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterMonitor
https://cloud.mongodb.com/?jmp=docs
https://docs.opsmanager.mongodb.com/current/
https://docs.opsmanager.mongodb.com/current/
https://docs.mongodb.com/manual/reference/built-in-roles/#hostManager
https://docs.mongodb.com/manual/reference/built-in-roles/#backup
https://cloud.mongodb.com/?jmp=docs
https://docs.opsmanager.mongodb.com/current/
https://docs.mongodb.com/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.com/manual/reference/built-in-roles/#backup
https://docs.mongodb.com/manual/reference/built-in-roles/#restore
https://docs.mongodb.com/manual/reference/program/mongorestore/#bin.mongorestore
https://docs.mongodb.com/manual/reference/program/mongorestore/#cmdoption--oplogReplay
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod

24

readAnyDatabase

Provides the same read-only permissions as read, except it applies to all databases

in the cluster. The role also provides the listDatabases action on the cluster as a

whole.

For the specific privileges granted by the role, see readAnyDatabase.

readWriteAnyDatabase

Provides the same read and write permissions as readWrite, except it applies to all

databases in the cluster. The role also provides the listDatabases action on the

cluster as a whole.

For the specific privileges granted by the role, see readWriteAnyDatabase.

userAdminAnyDatabase

Provides the same access to user administration operations as userAdmin, except it

applies to all databases in the cluster.

Since the userAdminAnyDatabase role allows users to grant any privilege to any

user, including themselves, the role also indirectly provides superuser access.

For the specific privileges granted by the role, see userAdminAnyDatabase.

dbAdminAnyDatabase

Provides the same access to database administration operations as dbAdmin, except it

applies to all databases in the cluster. The role also provides the listDatabases

action on the cluster as a whole

8.6.6 Other Roles
The following role provides full privileges on all resources:

SuperUser Roles

Warning: Several roles provide either indirect or direct system-wide superuser access.

The following roles provide the ability to assign any user any privilege on any database, which means that users with one

of these roles can assign themselves any privilege on any database:

 dbOwner role, when scoped to the admin database

 userAdmin role, when scoped to the admin database

 userAdminAnyDatabase role

root

Provides access to the operations and all the resources of the readWriteAnyDatabase,

dbAdminAnyDatabase, userAdminAnyDatabase and clusterAdmin roles combined.

__system

Provides privileges to take any action against any object in the database.

Do not assign this role to user objects representing applications or human administrators, other than

in exceptional circumstances.

Manage Users and Roles

Collection-Level Access Control: allows administrators to grant users privileges that are scoped to specific collections.

Enable authentication tutorial

https://docs.mongodb.com/manual/reference/built-in-roles/#readAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#read
https://docs.mongodb.com/manual/reference/privilege-actions/#authr.listDatabases
https://docs.mongodb.com/manual/reference/built-in-roles/#readAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#readWriteAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#readWrite
https://docs.mongodb.com/manual/reference/privilege-actions/#authr.listDatabases
https://docs.mongodb.com/manual/reference/built-in-roles/#readWriteAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#superuser
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdmin
https://docs.mongodb.com/manual/reference/privilege-actions/#authr.listDatabases
https://docs.mongodb.com/manual/reference/built-in-roles/#root
https://docs.mongodb.com/manual/reference/built-in-roles/#readWriteAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#__system
https://docs.mongodb.com/manual/tutorial/manage-users-and-roles/
https://docs.mongodb.com/manual/core/collection-level-access-control/
https://docs.mongodb.com/manual/tutorial/enable-authentication/

25

9.0 Encryption

9.1 Transport Encryption
You can use TLS/SSL (Transport Layer Security/Secure Sockets Layer) to encrypt all of MongoDB’s network traffic.

TLS/SSL ensures that MongoDB network traffic is only readable by the intended client.

Before you can use SSL, you must have a .pem file containing a public key certificate and its associated private key.

MongoDB can use any valid SSL certificate issued by a certificate authority or a self-signed certificate. If you use a self-

signed certificate, although the communications channel will be encrypted, there will be no validation of server identity.

Although such a situation will prevent eavesdropping on the connection, it leaves you vulnerable to a man-in-the-middle

attack. Using a certificate signed by a trusted certificate authority will permit MongoDB drivers to verify the server’s

identity.

9.2 Encryption at Rest Wired-Tiger Storage Engine only, Enterprise Edition Only
There are two broad classes of approaches to encrypting data at rest with MongoDB: Application Level Encryption and

Storage Encryption. You can use these solutions together or independently. Encryption at rest, when used in conjunction

with transport encryption and good security policies that protect relevant accounts, passwords, and encryption keys, can

help ensure compliance with security and privacy standards, including HIPAA, PCI-DSS, and FERPA.

10.0 Administration

10.1 Backup Methods

10.1.1 Filesystem Snapshot
You can create a backup by copying MongoDB’s underlying data files. File systems snapshots are an operating system

volume manager feature, and are not specific to MongoDB. To get a correct snapshot of a running mongod process, you

must have journaling enabled and the journal must reside on the same logical volume as the other MongoDB data files.

Without journaling enabled, there is no guarantee that the snapshot will be consistent or valid.

10.1.2 Copy Underlying Data Files
Another way to copy the underlying files is to make a copy of the entire –dbpath directory. First lock the database then

flush all the “dirty” files using the command below.

db.fsyncLock()

While the DB is locked, any further writes will be queued until unlocked

Use the copy command

cp –R /data/db/* /mnt/externaldevice/backup

unlock DB and pending writes will be processed

db.fsyncUnlock()

Important: If you use authentication, don’t close the shell because you can’t login again and may have to restart

mongod. Also, fsyncLock() does not persist and a new mongod will start unlocked.

10.1.3 mongodump/mongorestore

The mongodump tool reads data from a MongoDB database and creates high fidelity BSON files. The mongorestore

tool can populate a MongoDB database with the data from these BSON files.

Mongodump/mongorestore can be used to create an entirely new database using the –d –c commandline options.

https://docs.mongodb.com/manual/core/security-transport-encryption/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/backups/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.com/manual/reference/program/mongorestore/#bin.mongorestore

26

If you have a unique index other than “_id” do not mongodump/restore because indexes are not dumped. Instead

“freeze” the data and copy the directory.

10.2 Incremental Backups Using mongooplog
Perform a complete backup initially then incremental backups of the oplog since the last full backup. This technique is

much more complex than other methods.

10.3 Journal Files
With journaling enabled, MongoDB creates a subdirectory named journal under the dbPath directory. The journal

directory contains journal files named j._<sequence> where <sequence> is an integer starting from 0 and a “last

sequence number” file lsn.

Journal files contain the write ahead logs; each journal entry describes the bytes the write operation changed in the data

files. Journal files are append-only files. When a journal file holds 1 gigabyte of data, MongoDB creates a new journal

file. If you use the storage.smallFiles option when starting mongod, you limit the size of each journal file to 128

megabytes.

MongoDB uses write ahead logging to an on-disk journal to guarantee write operation durability. The MMAPv1 storage

engine also requires the journal in order to provide crash resiliency.

The WiredTiger storage engine does not require journaling to guarantee a consistent state after a crash. The database

will be restored to the last consistent checkpoint during recovery. However, if MongoDB exits unexpectedly in between

checkpoints, journaling is required to recover writes that occurred after the last checkpoint.

MongoDB configures WiredTiger to use snappy compression for the journaling data.

To enable journaling, start mongod with the --journal command line option. For 64-bit builds of mongod, journaling is

enabled by default. Do not disable journaling on production systems.

10.4 Server Logs
Log messages have the form: <timestamp> <severity> <component> [<context>] <message>

Severity Levels:

Level Description

F Fatal

E Error

W Warning

I Informational, for Verbosity Level of 0

D Debug, for All Verbosity Levels > 0

The default format for the <timestamp> is iso8601-local. To modify the timestamp format, use the --timeStampFormat
runtime option or the systemLog.timeStampFormat setting.

10.4.1 Log Message Components
Log messages now include components, providing functional categorization of the messages:

ACCESS related to access control, such as authentication

COMMAND related to database commands, such as count.

CONTROL related to control activities, such as initialization

FTDC
(New in v3.2)

related to the diagnostic data collection mechanism, such as server statistics and status
messages.

QUERY related to queries, including query planner activities.

https://docs.mongodb.com/manual/reference/configuration-options/#storage.dbPath
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/glossary/#term-journal
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/core/wiredtiger/#storage-wiredtiger-checkpoints
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/log-messages/
https://docs.mongodb.com/manual/reference/configuration-options/#systemLog.timeStampFormat
https://docs.mongodb.com/manual/reference/command/
https://docs.mongodb.com/manual/reference/command/count/#dbcmd.count

27

INDEX related to indexing operations, such as creating indexes

NETWORK related to network activities, such as accepting connections

REPL related to replica sets, such as initial sync and heartbeats

SHARDING related to sharding activities, such as the startup of the mongos.

STORAGE related to storage activities, such as processes involved in the fsync command.

JOURNAL related specifically to journaling activities

WRITE related to write operations, such as update commands

GEO related to the parsing of geospatial shapes, such as verifying the GeoJSON shapes

See Configure Log Verbosity Levels. To set verbosity log level per component use e.g. db.setLogLevel(-1, "query") where

loglevel {0-5, -1=inherit} . To view the current verbosity levels, use the db.getLogComponents() method.

10.4.2 Log Rotation
When used with the --logpath option or systemLog.path setting, mongod and mongos instances report a live account

of all activity and operations to a log file. By default, MongoDB only rotates logs in response to the logRotate

command, or when the mongod or mongos process receives a SIGUSR1 signal from the operating system.

MongoDB’s standard log rotation approach archives the current log file and starts a new one. The current log file is

renamed by appending a UTC timestamp to the filename, in ISODate format. It then opens a new log file

You can also configure MongoDB to support the Linux/Unix logrotate utility.

Also, configure mongod to send log data to the system’s syslog, using the --syslog option. In this case, you can take

advantage of alternate logrotation tools.

Mongo Shell Log Rotate Command:

use admin
db.runCommand({ logRotate : 1 })

10.5 Database Profiling
MongoDB’s “Profiler” is a database profiling system that can help identify inefficient queries and operations.

Profile Levels:

Level Setting

0 Off, No profiling

1 On, Only indicates slow operations, time settable

2 On, all operations included

Enable the profiler by setting the profile value using: db.setProfilingLevel(level, slowms)

You can view the output of the profiler in the system.profile collection of your database by issuing the show profile

command in the mongo shell, or with the following operation:

db.system.profile.find({millis: {$gt: 100}}) : for operations greater than 100ms

10.6 Monitoring
Monitoring is a critical component of all database administration. A firm grasp of MongoDB’s reporting will allow you to

assess the state of your database and maintain your deployment without crisis.

Monitoring Strategies: Each strategy can help answer different questions and is useful in different contexts. These

methods are complementary.

https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/command/fsync/#dbcmd.fsync
https://docs.mongodb.com/manual/reference/command/update/#dbcmd.update
https://docs.mongodb.com/manual/reference/log-messages/#log-messages-configure-verbosity
https://docs.mongodb.com/manual/reference/method/db.setLogLevel/
https://docs.mongodb.com/manual/reference/method/db.getLogComponents/#db.getLogComponents
https://docs.mongodb.com/manual/tutorial/rotate-log-files/
https://docs.mongodb.com/manual/reference/program/mongos/#cmdoption--logpath
https://docs.mongodb.com/manual/reference/configuration-options/#systemLog.path
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/command/logRotate/#dbcmd.logRotate
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/glossary/#term-isodate
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#cmdoption--syslog
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/#database-profiling
https://docs.mongodb.com/manual/reference/command/profile/#dbcmd.profile
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/#database-profiling
https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://docs.mongodb.com/manual/administration/monitoring/

28

 First, there is a set of utilities distributed with MongoDB that provides real-time reporting of database activities.
 Second, database commands return statistics regarding the current database state with greater fidelity.
 Third, MongoDB Cloud Manager, a hosted service, and Ops Manager, an on-premise solution available in

MongoDB Enterprise Advanced, provide monitoring to collect data from running MongoDB deployments as well
as providing visualization and alerts based on that data.

10.6.1 MongoDB Reporting Tools
The MongoDB distribution includes a number of utilities that quickly return statistics about instances’ performance and

activity.

mongostat mongostat captures and returns the counts of database operations by type (e.g. insert, query,
update, delete, etc.). These counts report on the load distribution on the server.
Use mongostat to understand the distribution of operation types and to inform capacity
planning. See the mongostat manual for details.

mongotop mongotop tracks and reports the current read and write activity of a MongoDB instance, and
reports these statistics on a per collection basis.
Use mongotop to check if your database activity and use match your expectations. See the
mongotop manual for details.

10.6.2 Monitor Commands
MongoDB includes a number of commands that report on the state of the database..These data may provide a finer

level of granularity than the utilities discussed above.

db.serverStatus() from the shell, returns a general overview of the status of the database,
detailing disk usage, memory use, connection, journaling, and index access.

db.stats() from the shell, returns a document that addresses storage use and data
volumes at the database level. The dbStats reflect the amount of storage
used, the quantity of data contained in the database, and object,
collection, and index counters.

db.collection.stats() provides statistics that resemble dbStats at the collection level, including
a count of the objects in the collection, the size of the collection, the
amount of disk space used by the collection, and information about its
indexes.

rs.status() returns an overview of your replica set’s status. The replSetGetStatus
document details the state and configuration of the replica set and
statistics about its members.

db.collection.totalIndexSize() return the index size in bytes

11. MongoDB and Relational Databases
Highly Scalable, limited Function: Memcached, Key Value Store

Limited Scaling, High Funtionality: Traditional Relational Databases

MongoDBDoes does not support Joins or Transactions

See MongoDB limits and thresholds

Database Concepts

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collection

https://docs.mongodb.com/manual/reference/command/
https://www.mongodb.com/cloud/cloud-manager/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.mongodb.com/manual/reference/program/mongostat/#bin.mongostat
https://docs.mongodb.com/manual/reference/program/mongostat/#bin.mongostat
https://docs.mongodb.com/manual/reference/program/mongostat/
https://docs.mongodb.com/manual/reference/program/mongotop/#bin.mongotop
https://docs.mongodb.com/manual/reference/program/mongotop/#bin.mongotop
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/method/db.serverStatus/#db.serverStatus
https://docs.mongodb.com/manual/reference/method/db.stats/#db.stats
https://docs.mongodb.com/manual/reference/command/dbStats/#dbcmd.dbStats
https://docs.mongodb.com/manual/reference/method/db.collection.stats/#db.collection.stats
https://docs.mongodb.com/manual/reference/command/dbStats/#dbcmd.dbStats
https://docs.mongodb.com/manual/reference/method/rs.status/#rs.status
https://docs.mongodb.com/manual/reference/command/replSetGetStatus/
https://docs.mongodb.com/master/reference/method/db.collection.totalIndexSize/#db.collection.totalIndexSize
https://docs.mongodb.com/manual/reference/limits/
https://docs.mongodb.com/manual/reference/glossary/#term-database
https://docs.mongodb.com/manual/reference/glossary/#term-collection

29

SQL Terms/Concepts MongoDB Terms/Concepts

row document or BSON document

column field

index index

table joins embedded documents and linking

primary key

Specify any unique column or column combination as
primary key.

primary key

In MongoDB, the primary key is automatically set to the
_id field.

aggregation (e.g. group by) aggregation pipeline

Flexible (Schema-less) Schema
Data in MongoDB has a flexible schema. Unlike SQL databases, where you must determine and declare a table’s schema

before inserting data, MongoDB’s collections do not enforce document structure.

References store the relationships between data by including links or references from one document to another.

Applications can resolve these references to access the related data. Broadly, these are normalized data models.

Embedded documents capture relationships between data by storing related data in a single document structure.

MongoDB documents make it possible to embed document structures in a field or array within a document. These

denormalized data models allow applications to retrieve and manipulate related data in a single database operation.

Atomocity of Write Operations
In MongoDB, write operations are atomic at the document level, and no single write operation can atomically affect

more than one document or more than one collection. A denormalized data model with embedded data combines all

related data for a represented entity in a single document. This facilitates atomic write operations since a single write

operation can insert or update the data for an entity. Normalizing the data would split the data across multiple

collections and would require multiple write operations that are not atomic collectively.

Appendix
A.1 BSON data types
BSON supports the following data types as values in documents. Each data type has a corresponding number and string

alias that can be used with the $type operator to query documents by BSON type.

Type Number Alias Notes

Double 1 “double”

String 2 “string”

Object 3 “object”

Array 4 “array”

Binary data 5 “binData”

Undefined 6 “undefined” Deprecated.

https://docs.mongodb.com/manual/reference/glossary/#term-document
https://docs.mongodb.com/manual/reference/glossary/#term-bson
https://docs.mongodb.com/manual/reference/glossary/#term-field
https://docs.mongodb.com/manual/reference/glossary/#term-index
https://docs.mongodb.com/manual/reference/glossary/#term-primary-key
https://docs.mongodb.com/manual/reference/glossary/#term-id
https://docs.mongodb.com/master/reference/glossary/#term-collection
https://docs.mongodb.com/master/reference/glossary/#term-document
https://docs.mongodb.com/master/reference/database-references/
https://docs.mongodb.com/master/reference/glossary/#term-document
https://docs.mongodb.com/manual/reference/operator/query/type/#op._S_type

30

Type Number Alias Notes

ObjectId 7 “objectId”

Boolean 8 “bool”

Date 9 “date”

Null 10 “null”

Regular Expression 11 “regex”

DBPointer 12 “dbPointer”

JavaScript 13 “javascript”

Symbol 14 “symbol”

JavaScript (with scope) 15 “javascriptWithScope”

32-bit integer 16 “int”

Timestamp 17 “timestamp”

64-bit integer 18 “long”

Min key -1 “minKey”

Max key 127 “maxKey”

A.2 Unique Keys for Sharded Collections
The unique constraint on indexes ensures that only one document can have a value for a field in a collection. For

sharded collections these unique indexes cannot enforce uniqueness because insert and indexing operations are local to

each shard.

MongoDB does not support creating new unique indexes in sharded collections and will not allow you to shard

collections with unique indexes on fields other than the _id field.

If you need to ensure that a field is always unique in a sharded collection, there are three options:

Enforce uniqueness of the shard key.

MongoDB can enforce uniqueness for the shard key. For compound shard keys, MongoDB will enforce uniqueness on

the entire key combination, and not for a specific component of the shard key.

You cannot specify a unique constraint on a hashed index.

 Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and a reference to a document in the main collection. If

you always insert into a secondary collection before inserting to the main collection, MongoDB will produce an error if

you attempt to use a duplicate key.

https://docs.mongodb.com/v2.6/tutorial/enforce-unique-keys-for-sharded-collections/
https://docs.mongodb.com/v2.6/reference/method/db.collection.ensureIndex/#db.collection.ensureIndex
https://docs.mongodb.com/v2.6/reference/glossary/#term-collection
https://docs.mongodb.com/v2.6/reference/limits/#limit-sharding-unique-indexes
https://docs.mongodb.com/v2.6/core/sharding-shard-key/#sharding-shard-key
https://docs.mongodb.com/v2.6/reference/glossary/#term-shard-key
https://docs.mongodb.com/v2.6/core/index-hashed/#index-type-hashed

31

If you have a small data set, you may not need to shard this collection and you can create multiple unique indexes.

Otherwise you can shard on a single unique key.

 Use guaranteed unique identifiers.

Universally unique identifiers (i.e. UUID) like the ObjectId are guaranteed to be unique.

Procedures

Unique Constraints on the Shard Key

Process

To shard a collection using the unique constraint, specify the shardCollection command in the following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB inserts an ObjectId into the _id field.

However, you can manually insert your own value into the _id field and use this as the shard key. To use the _id field

as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

Limitations

 You can only enforce uniqueness on one single field in the collection using this method.

 If you use a compound shard key, you can only enforce uniqueness on the combination of component keys in

the shard key.

A.3 Deploy a Sharded Cluster Test Environment, tutorial
Sets up Sharded Clusters for testing.

A.3.1 Use shell script “init_sharded_env_raw.sh”
Linux script sets up 3 shards with 3-member replica sets each. User edit for database, collection and shard key.

A.3.2 ShardingTest Platform
Deploys Sharding Cluster with mongods on ports 30000, 30001, 30002

> mongo –nodb

> cluster = new ShardingTest({“shards”:3, “chunksize”: 1})

A.3.3 Insert some data using shell script
use students
for (var i = 0; i<1000; i++) {db.grades.insert({student_id:i})}

https://docs.mongodb.com/v2.6/reference/command/shardCollection/#dbcmd.shardCollection
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

32

A.4 Compound Multikey Indexes and Multikey Index Bounds

For a compound multikey index, each indexed document can have at most one indexed field whose value is an

array. As such, you cannot create a compound multikey index if more than one to-be-indexed field of a

document is an array. Or, if a compound multikey index already exists, you cannot insert a document that would

violate this restriction.

For example, consider a collection that contains the following document:

{ _id: 1, a: [1, 2], b: [1, 2], category: "AB - both arrays" }

You cannot create a compound multikey index { a: 1, b: 1 } on the collection since both the a and b fields

are arrays.

But consider a collection that contains the following documents:

{ _id: 1, a: [1, 2], b: 1, category: "A array" }

{ _id: 2, a: 1, b: [1, 2], category: "B array" }

A compound multikey index { a: 1, b: 1 } is permissible since for each document, only one field indexed

by the compound multikey index is an array; i.e. no document contains array values for both a and b fields.

After creating the compound multikey index, if you attempt to insert a document where both a and b fields are

arrays, MongoDB will fail the insert.

A.5 Enabling Authentication Example
This section describes native SCRAM-SHA-1 authorization set-up where administrator rossw is omnipotent for all admin,

user, database, cluster, restore roles.

User type roles Database (db)

Administrator
(omnipotent, unique)

 root

 userAdminAnyDatabase

 dbAdminAnyDatabase

“admin”

normal db user  readWrite Per database

See Authorization Tutorial and Built-in Role Reference

Method: Add db admin user before enabling Authentication:

1. Before enabling server with Authentication enabled, start a mongod without –-auth option.
mongod --port 27017 --dbpath c:\data\db

2. Create the database admin user with omnipotent privileges
mongo –-port 27017
use admin

MongoDB Enterprise > db.createUser({ user: "rossw", pwd: "xxxx", roles: [{ role: "root", db: "admin" }]})
Successfully added user: {
 "user" : "rossw",

https://docs.mongodb.com/manual/core/index-multikey/
https://docs.mongodb.com/manual/core/multikey-index-bounds/
https://docs.mongodb.com/manual/core/index-compound/#index-type-compound
https://docs.mongodb.com/manual/reference/built-in-roles/#root
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#dbAdminAnyDatabase
https://docs.mongodb.com/manual/reference/built-in-roles/#readWrite
https://docs.mongodb.com/manual/tutorial/enable-authentication/
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin

33

 "roles" : [
 {
 "role" : "root",
 "db" : "admin"
 }
]
}

3. Update admin users. Notice that db.updateUser() replaces, not updates, the user role document
use admin
su = {roles: [
{role: "root", db:"admin"},
{role: "dbAdminAnyDatabase", db: "admin"},
{role: "userAdminAnyDatabase", db: "admin"}]}

db.updateUser(“rossw”, su)

MongoDB Enterprise > db.system.users.find()
{ "_id" : "admin.rossw", "user" : "rossw", "db" : "admin", "credentials" : { "SCRAM-SHA-1" : { "iterationCount" : 10000,
"salt" : "/UMdZS9aWXK4mzJROcnKJQ==", "storedKey" : "mKKIzo0vZ+qZMKCzGUhYVGQVjBA=", "serverKey" :
"3ECzmLjWo3Wr1XmICGTRdj9lZLY=" } }, "roles" : [{ "role" : "root", "db" : "admin" }, { "role" : "dbAdminAnyDatabase",
"db" : "admin" }, { "role" : "userAdminAnyDatabase", "db" : "admin" }] }
{ "_id" : "admin.raw", "user" : "raw", "db" : "admin", "credentials" : { "SCRAM-SHA-1" : { "iterationCount" : 10000, "salt" :
"2UfpNEFcC3J68E47puNPmw==", "storedKey" : "9Yz2QlAGqNS9UKyskpMTq52fuwU=", "serverKey" :
"Tj3U6eac1BwAu4V+B9BFsJYXEps=" } }, "roles" : [{ "role" : "readWrite", "db" : "week6" }] }

Method: Enable Authorization and add User

4. Exit mongo, kill then restart mongod with --auth
mongod –-port 27017 –-dbpath c:\data\db –-auth

5. start mongo shell and login as db admin user
mongo --port 27017 -u "rossw" -p "xxxx" --authenticationDatabase "admin"

6. Add database user raw with readWrite privileges on db week6
MongoDB Enterprise > db.createUser({ user: "raw", pwd: "xxxx", roles: [{ role: "readWrite", db: "week6" }]})
Successfully added user: {
 "user" : "raw",
 "roles" : [
 {
 "role" : "readWrite",
 "db" : "week6"
 }
]
}

Shell Authentication
When logged into mongo shell, use db.auth() method to authenticate:
use admin
db.auth("myUserAdmin", "PWDabc123")

Validate User Roles and Privileges

34

Use the usersInfo command or db.getUser() method to display user information.

use admin
db.getUser("reportsUser")

Identify the privileges granted by a role
For a given role, use the db.getRole() method, or the rolesInfo command, with the showPrivileges option: For example,
to view the privileges granted by read role on the products database, use the following operation,

 use week6

 db.getRole("read", { showPrivileges: true })

 db.getRole("readWrite", { showPrivileges: true })

 db.getRole("root", { showPrivileges: true })

Document End

Disclaimer: This document is a “best effort” based on contemporaneous MongoDB website documentation. It is not

intended as a comprehensive, authoritative reference. I’m not responsible if you use this Guide and fail the certification

exam. Use entirely at your own risk.

By Ross Winters, 7/12/16

https://docs.mongodb.com/manual/reference/command/usersInfo/#dbcmd.usersInfo
https://docs.mongodb.com/manual/reference/method/db.getUser/#db.getUser
https://docs.mongodb.com/manual/reference/method/db.getRole/#db.getRole
https://docs.mongodb.com/manual/reference/command/rolesInfo/#dbcmd.rolesInfo

